BAB 1 PENDAHULUAN

A. Latar Belakang

Bersihan jalan napas tidak efektif menjadi masalah utama dari dampak pengeluaran sekret yang tidak lancar. karena pasien yang mengalami gangguan jalan napas, gangguan pernapasan dan gangguan sirkulasi bisa disebabkan oleh gangguan sentral akibat depresi pernafasan pada lesi di medula oblongata atau akibat gangguan perifer seperti: aspirasi, edema paru, emboli paru yang dapat berakibat hipoksia dan hiperkapnia. Tindakan yang dapat dilakukan pada kondisi diatas adalah pemberian oksigen dan melakukan tindakan *suctioning* untuk mempertahankan oksigenasi (Muttaqin, 2020; Basuki & Dian, 2019; Hudak & Gallo, 2020). Tekanan 10 mmHg merupakan tekanan negatif minimal yang dianjurkan untuk melakukan *suction* tetapi tekanan *suction* dapat diatur berdasarkan jumlah dan karakteristik dari sekret yang terdapat pada jalan nafas, bila tekanan 10 mmHg belum dapat memobilisasi sekret maka tekanan dapat ditingkatkan menjadi 15 mmHg karena bila lebih dari tekanan tersebut dapat menyebabkan trauma jalan nafas dan hipoksia (Potter & Perry, 2020; Hahn, 2020; Day et al, 2018).

Data global mengenai pasien yang membutuhkan tindakan *suctioning* tidak tersedia secara spesifik dalam satu laporan tunggal. Namun dapat dipahami bahwa banyak pasien diberbagai setting perawatan kesehatan memerlukan tindakan *suctioning* seperti pada penelitian yan dilakukan oleh (Cereda et al, 2020), pada penggunaan tekanan *suction* 10 mmHg akan dapat menyebabkan kehilangan volume udara pada paru hingga 1200 ml terutama

dengan teknik open *suction*, demikian pula dengan penelitian yang dilakukan oleh (Fernandez et al, 2019), bahwa penggunaan tekanan suction 15 mmHg dapat menyebabkan kehilangan udara paru sebesar 1,281 + 656 ml. semakin besar tekanan suction maka semakin besar jumlah udara yang terhisap dari paru- paru. Menurut (Maisyaroh, 2020) dari hasil penelitian kelompok 1 dengan suction intervensi tekanan 15 mmHg, nilai minimum pada pre test adalah 98, dan nilai maksimum pada post test adalah 92, dan nilai maksimum pada pre test adalah 100, serta nilai maksimum pada post test adalah 95, berdasarkan hal tersebut didapatkan nilai uji Wilxocon p 0,0006 < 0,05 dengan nilai ini maka dapat disimpulkan bahwa terdapat perbedaan antara nilai pre test dan post test pada intervensi suction tekanan 15 mmHg. Kemudian didapatkan pula hasil bahwa kelompok 2 dengan suction intervensi tekanan 10 mmHg, nilai minimum pada pretest adalah 99, sedangkan pada post test adalah 94, dan nilai maksimum pada pretest adalah 100, serta nilai maksimum pada post test adalah 97, berdasarkan hal tersebut didapatkan nilai uji Wilcoxon p= (0,007 < 0,05 dengan nilai ini maka dapat disimpulkan bahwa terdapat perbedaan antara nilai pretest dan post test pada intervensi suction dengan tekanan 10 mmHg. Didukung dengan hasil penelitian yang dilakukan oleh Apui et al, (2023) yang menunjukkan hasil saturasi oksigen pada responden sebelum tindakan suction diperoleh hasil nilai tendensi sentral sebelum (pretest) yaitu mean sebesar 91,53%; median 91%; minimum 87%; maksimum 96% dan standar deviasi 2,997%; dan saturasi oksigen sesudah (post test) yaitu mean sebesar 96,40%; median 97%; minimum 93%; maksimum 99% dan standar deviasi 1,805% yang artinya terdapat peningkatan saturasi oksigen sesudah dilakukan tindakan

suction. Menurut hasil penelitian yang dilakukan oleh Wulan & Huda, (2022) menunjukkan hasil bahwa suction memiliki pengaruh yang signifikan terhadap perubahan saturasi Oksigen pada responden yang dirawat di ICU RSUD RAA Soewondo Pati dengan nilai rata-rata sebelum suction terdapat 93,38% sedangkan setelah disuction nilai rata-rata sebesar 94,19%.

Berdasarkan studi pendahuluan di ruang perawatan *Intensive Care Unit* (ICU) RSUD Sidoarjo Barat pada tahun 2022 jumlah pasien sebanyak 51 pasien, pada tahun 2023 jumlah pasien sebanyak 347 pasien dan pada tahun 2024 jumlah pasien sebanyak 521 pasien. Rata- rata pasien yang dilakukan suctioning diruang intensive care unit (ICU) RSUD Sidoarjo Barat sebanyak 40% dari jumlah pasien setiap bulannya.

Bersihan jalan nafas tidak efektif muncul karena adanya spasme jalan nafas, hipersekresi jalan nafas, sekresi yang tertahan, proses infeksi, respon alergi, benda asing dalam jalan nafas, dan adanya jalan nafas buatan. Merokok aktif, merokok pasif, dan terpapar polutan merupakan faktor situasional dari bersihan jalan nafas tidak efektif (PPNI, 2020) gejala seperti dispnea, suara nafas tambahan (ronchi dan mengi), perubahan pada irama dan frekwensi pernafasan, sianosis, kesulitan berbicara, penurunan suara nafas, sputum berlebihan, batuk tidak efektif atau tidak ada, *ortopnea*, gelisah, mata terbelalak (Judith, 2020). Menurut (Firmansyah, et al. 2021) etiologi gagal nafas yaitu terjadinya kerusakan atau depresi pada system syaraf pengontrol pernafasan (luka di kepala, perdarahan/ thrombus di cerebral, obat yang menekan pernafasan), gangguan muscular yang disebabkan oleh tetanus atau obat- obatan, kelainan neurologis primer (penyakit pada saraf seperti medulla

spinalis, otot- otot pernafasan atau pertemuan *neuromuscular* yang terjadi pada pernafasan sehingga mempengaruhi ventilasi), trauma (kecelakaan yang mengakibatkan cedera kepala, ketidaksadaran, dan perdarahan hidung, mulut dapat mengarah pada obstruksi jalan nafas dan depresi pernafasan), dan penyakit paru akut (pneumonia yang disebabkan bakteri dan virus, asma bronchial, *atelectasis*, embolisme paru dan edema paru).

Cara mengatasi ketidakefektifan bersihan jalan nafas adalah dengan melakukan tindakan penghisapan lendir atau *suction* (Nurachmah & Sudarsono, 2017 dalam Irmawan & Muflihatin, 2019). Tindakan *suction* merupakan salah satu prosedur yang digunakan di ruang *Intensive Care Unit* (ICU) untuk mengatasi masalah ketidakefektifan bersihan jalan nafas akibat penumpukan sputum, darah atau cairan (Hammad, 2020).

Dampak yang berbahaya jika masalah bersihan jalan nafas tidak segera diatasi akan mengalami penyempitan jalan nafas dan klien dapat mengalami kesulitan bernafas sampai henti nafas (Nurhayati, 2021). Tindakan *suction* yang tidak segera dilakukan pada pasien yang mengalami ketidakefektifan bersihan jalan nafas dapat menyebabkan pasien mengalami kekurangan suplai oksigen (desaturasi), Keadaan ini juga disebut gagal nafas yang disebabkan oleh pertukaran gas antara paru-paru dan darah yang tidak dapat mempertahankan ph, PO2, PCO2, darah arteri dalam batas normal dan menyebabkan *hipoksia* disertai *hiperkapnia* (Oktaridho, 2022).Komplikasi yang paling sering terjadi akibat tindakan *open suction* adalah terjadinya hipoksemia, hipoksia dimana oksigen tidak tersedia dalam jumlah yang cukup ditingkat jaringan untuk mempertahankan hemostasis yang memadai, hal ini

terjadi akibat pengiriman oksigen yang tidak memadai ke jaringan baik karena suplai darah yang rendah atau kandungan oksigen yang rendah dalam darah (Nitsure et al., 2020).

Berdasarkan buku SOP PPNI didapatkan rentang kekuatan tekanan *suctioning* antara 10 mmHg – 15 mmHg, jadi tidak ada ketentuan baku tentang berapa kekuatan *suction* yang ideal. Maka peneliti ingin melakukan penelitian di ICU RSUD Sidoarjo Barat tentang perbedaan hasil pengukuran saturasi oksigen dengan perbandingan kekuatan 10 mmHg dan 15 mmHg. Karena Penurunan saturasi oksigen pada pasien yang dirawat di ruang intensif saat tindakan *open suction* masih tinggi, untuk mengurangi kejadian tersebut adalah dengan membuat standar prosedur operasional untuk tindakan *suction*. Setiap melakukan kegiatan tersebut semua perawat harus sesuai dengan standar operasional yang ada (Almgren, 2018).

Mengingat tindakan *suction* ini dapat menyebabkan bahaya, maka sangat diperlukan kewaspadaan yang dini, kepatuhan untuk melakukan tindakan sesuai dengan SOP yang benar dan keterampilan yang baik bagi petugas kesehatan yang akan melakukan tindakan tersebut, terlebih khusus bagi tenaga perawat. Sebab tanpa hal-hal tersebut dapat memberikan dampak yang buruk bagi pasien ynag sementara dirawat. Salah satunya bisa terjadi penurunan kadar oksigen dan jika petugas kesehatan/ perawat tidak peka dengan masalah yang muncul bisa mengakibatkan pasien mengalami gagal napas bahkan sampai kepada kematian. Mekanisme pebedaan *open suctioning* dengan tekanan 10 mmHg dan 15 mmHg terhadap SpO2 di Rumah Sakit Umum Daerah Sidoarjo Barat belum dapat dijelaskan sehingga peneliti ingin

mengetahui perbedaan *suctioning* pada pasien tekanan 10 mmHg dan 15 mmHg terhadap perubahan SpO2 di Rumah Sakit Umum Daerah Sidoarjo Barat.

B. Pembatasan dan Rumusan Masalah

"Bagaimana perbedaan *suctioning* pada pasien dengan tekanan 10 mmHg dan 15 mmHg terhadap perubahan SpO2 di Rumah Sakit Umum Daerah Sidoarjo Barat?"

C. Tujuan Penelitian

1. Tujuan Umum

Menganalisis perbedaan *suctioning* dengan tekanan 10 mmHg dan 15 mmHg terhadap perubahan SpO2 di Rumah Sakit Umum Daerah Sidoarjo Barat.

2. Tujuan Khusus

- a. Mengidentifikasi saturasi oksigen sebelum dan sesudah proses suctioning pada pasien dengan tekanan 10 mmHg di Rumah Sakit Umum Daerah Sidoarjo Barat.
- Mengidentifikasi saturasi oksigen sebelum dan sesudah proses suctioning pada pasien dengan tekanan 15 mmHg di RSUD Sidoarjo Barat.
- Menganalisis perbedaan saturasi oksigen sebelum dan sesudah proses suctioning pada pasien dengan tekanan 10 mmHg dan dengan tekanan 15 mmHg di RSUD Sidoarjo Barat.

D. Manfaat_Penelitian

1. Teoritis

Hasil penelitian diharapkan menjadi salah satu referensi pustaka keperawatan dalam mengembangkan *Evidance Based Nursing* dalam peningkatan kualitas profesi keperawatan.

2. Praktis

a. Bagi Penulis

Mengaplikasikan tekanan *suctioning* dalam hal melakukan tindakan *suction* pada pasien.

b. Bagi Rumah Sakit

Dapat dijadikan referensi untuk membuat SOP tekanan pada proses sectioning pada pasien.

c. Bagi Perawat

Menambah pengetahuan tentang penerapan *suctioning* pada pasien dengan tekanan 10 mmHg dan 15 mmHg terhadap perubahan saturasi oksigen.

d. Bagi Responden

Mencegah penurunan nilai kadar saturasi oksigen yang signifikan pada saat dilakukan tindakan penghisapan lendir.